1
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In a $$\triangle A B C$$, suppose $$y=x$$ is the equation of the bisector of the angle $$B$$ and the equation of the side $$A C$$ is $$2 x-y=2$$. If $$2 A B=B C$$ and the points $$A$$ and $$B$$ are respectively $$(4,6)$$ and $$(\alpha, \beta)$$, then $$\alpha+2 \beta$$ is equal to

A
42
B
39
C
48
D
45
2
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$, if $$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$$, and $$\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$$ then $$y\left(\frac{\pi}{4}\right)$$ is equal to

A
$$-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
B
$$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
C
$$\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
D
$$\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$$
3
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}$$ be a square matrix such that $$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$$. Then $$\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$$ is equal to

A
$$\mathrm{A}^2+\mathrm{A}^{\mathrm{T}}$$
B
$$\mathrm{A}^3+\mathrm{I}$$
C
$$\mathrm{A}^3+\mathrm{A}^{\mathrm{T}}$$
D
$$\mathrm{A}^2+\mathrm{I}$$
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$z=\frac{1}{2}-2 i$$ is such that $$|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$$ and $$\alpha, \beta \in \mathbb{R}$$, then $$\alpha+\beta$$ is equal to

A
2
B
$$-$$4
C
3
D
$$-$$1
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12