1
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is

A
69
B
$$\sqrt{99}$$
C
$$\sqrt{69}$$
D
9
2
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$$ is equal to

A
$$\frac{3 \pi^2}{4}$$
B
$$\frac{3 \pi^2}{8}$$
C
$$\frac{3 \pi}{4}$$
D
$$\frac{3 \pi}{8}$$
3
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to

A
2
B
1
C
$$-$$1
D
0
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is

A
$$-\frac{3}{2}$$
B
3
C
$$\frac{3}{2}$$
D
2
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12