1
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$, if $$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$$, and $$\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$$ then $$y\left(\frac{\pi}{4}\right)$$ is equal to

A
$$-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
B
$$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
C
$$\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
D
$$\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$$
2
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{A}$$ be a square matrix such that $$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$$. Then $$\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$$ is equal to

A
$$\mathrm{A}^2+\mathrm{A}^{\mathrm{T}}$$
B
$$\mathrm{A}^3+\mathrm{I}$$
C
$$\mathrm{A}^3+\mathrm{A}^{\mathrm{T}}$$
D
$$\mathrm{A}^2+\mathrm{I}$$
3
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$z=\frac{1}{2}-2 i$$ is such that $$|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$$ and $$\alpha, \beta \in \mathbb{R}$$, then $$\alpha+\beta$$ is equal to

A
2
B
$$-$$4
C
3
D
$$-$$1
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider the function $$f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$$ defined by $$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$$. Consider the statements

(I) The curve $$y=f(x)$$ intersects the $$x$$-axis exactly at one point.

(II) The curve $$y=f(x)$$ intersects the $$x$$-axis at $$x=\cos \frac{\pi}{12}$$.

Then

A
Both (I) and (II) are correct.
B
Only (I) is correct.
C
Both (I) and (II) are incorrect.
D
Only (II) is correct.
JEE Main Papers
2023
2021
EXAM MAP