If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is
The area (in sq. units) of the part of the circle $$x^2+y^2=169$$ which is below the line $$5 x-y=13$$ is $$\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$$, where $$\alpha, \beta$$ are coprime numbers. Then $$\alpha+\beta$$ is equal to __________.
If the mean and variance of the data $$65,68,58,44,48,45,60, \alpha, \beta, 60$$ where $$\alpha> \beta$$, are 56 and 66.2 respectively, then $$\alpha^2+\beta^2$$ is equal to _________.
Equations of two diameters of a circle are $$2 x-3 y=5$$ and $$3 x-4 y=7$$. The line joining the points $$\left(-\frac{22}{7},-4\right)$$ and $$\left(-\frac{1}{7}, 3\right)$$ intersects the circle at only one point $$P(\alpha, \beta)$$. Then, $$17 \beta-\alpha$$ is equal to _________.