$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$$ is equal to
A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to
If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is
The area (in sq. units) of the part of the circle $$x^2+y^2=169$$ which is below the line $$5 x-y=13$$ is $$\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$$, where $$\alpha, \beta$$ are coprime numbers. Then $$\alpha+\beta$$ is equal to __________.