Let $$\vec{a}, \vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that $$\vec{b}$$ and $$\vec{c}$$ are non-collinear. If $$\vec{a}+5 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+6 \vec{c}$$ is collinear with $$\vec{a}$$ and $$\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$$, then $$\alpha+\beta$$ is equal to
Let $$\left(5, \frac{a}{4}\right)$$ be the circumcenter of a triangle with vertices $$\mathrm{A}(a,-2), \mathrm{B}(a, 6)$$ and $$C\left(\frac{a}{4},-2\right)$$. Let $$\alpha$$ denote the circumradius, $$\beta$$ denote the area and $$\gamma$$ denote the perimeter of the triangle. Then $$\alpha+\beta+\gamma$$ is
If $$\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$$ is the solution of $$4 \cos \theta+5 \sin \theta=1$$, then the value of $$\tan \alpha$$ is
If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to