1
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
Let $\mathrm{P}=\{\mathrm{z} \in \mathbb{C}:|z+2-3 i| \leq 1\}$ and $\mathrm{Q}=\{\mathrm{z} \in \mathbb{C}: z(1+i)+\bar{z}(1-i) \leq-8\}$. Let in $\mathrm{P} \cap \mathrm{Q}$, $|z-3+2 i|$ be maximum and minimum at $z_1$ and $z_2$ respectively. If $\left|z_1\right|^2+2\left|z_2\right|^2=\alpha+\beta \sqrt{2}$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ equals _____________.
Your input ____
2
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\beta \log _{\mathrm{e}}(3+2 \sqrt{2})$, where $\alpha, \beta$ are integers, then $\alpha^2+\beta^2$ equals :
Your input ____
3
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
Let the line of the shortest distance between the lines

$$ \begin{aligned} & \mathrm{L}_1: \overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\\\ & \mathrm{L}_2: \overrightarrow{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \end{aligned} $$

intersect $\mathrm{L}_1$ and $\mathrm{L}_2$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. If $(\alpha, \beta, \gamma)$ is the mid point of the line segment $\mathrm{PQ}$, then $2(\alpha+\beta+\gamma)$ is equal to ____________.
Your input ____
4
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that

$R_1=\{(a, b): b$ is divisible by $a\}$

$R_2=\{(a, b): a$ is an integral multiple of $b\}$.

Then, number of elements in $R_1-R_2$ is equal to _____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP