1
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is :
A
$\frac{2}{5}$
B
$\frac{2}{7}$
C
$\frac{1}{7}$
D
$\frac{1}{5}$
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$ equals :
A
$\frac{\sqrt{2} \pi^2}{8}$
B
$\frac{\sqrt{2} \pi^2}{16}$
C
$\frac{\sqrt{2} \pi^2}{32}$
D
$\frac{\sqrt{2} \pi^2}{64}$
3
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\mathrm{A}=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -1 & \sqrt{2}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$ and $\mathrm{X}=\mathrm{A}^{\mathrm{T}} \mathrm{C}^2 \mathrm{~A}$, then $\operatorname{det} \mathrm{X}$ is equal to :
A
243
B
729
C
27
D
891
4
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and

$\tan \mathrm{C}=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<\mathrm{A}, \mathrm{B}, \mathrm{C}<\frac{\pi}{2}$, then $\mathrm{A}+\mathrm{B}$ is equal to :
A
$\mathrm{C}$
B
$\pi-C$
C
$2 \pi-C$
D
$\frac{\pi}{2}-\mathrm{C}$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12