1
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}$ intersect at two distinct points, is $\mathrm{R}-[\mathrm{a}, \mathrm{b}]$, then the point $(8 \mathrm{a}+12,16 \mathrm{~b}-20)$ lies on the curve :
A
$x^2+2 y^2-5 x+6 y=3$
B
$5 x^2-y=-11$
C
$x^2-4 y^2=7$
D
$6 x^2+y^2=42$
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^2-2, \forall x \neq 0$ and $y=9 x^2 f(x)$, then $y$ is strictly increasing in :
A
$\left(0, \frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
B
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
C
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
D
$\left(-\infty, \frac{1}{\sqrt{5}}\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
3
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the shortest distance between the lines

$\frac{x-\lambda}{-2}=\frac{y-2}{1}=\frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1}=\frac{y-1}{-2}=\frac{z-2}{1}$ is 1 , then the sum of all possible values of $\lambda$ is :
A
0
B
$2 \sqrt{3}$
C
$3 \sqrt{3}$
D
$-2 \sqrt{3}$
4
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
If $x=x(t)$ is the solution of the differential equation $(t+1) \mathrm{d} x=\left(2 x+(t+1)^4\right) \mathrm{dt}, x(0)=2$, then, $x(1)$ equals _________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12