1
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
The number of elements in the set $\mathrm{S}=\{(x, y, z): x, y, z \in \mathbf{Z}, x+2 y+3 z=42, x, y, z \geqslant 0\}$ equals __________.
Your input ____
2
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals ___________.
Your input ____
3
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to ___________.
Your input ____
4
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
Let $\{x\}$ denote the fractional part of $x$ and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0$. If $\mathrm{L}$ and $\mathrm{R}$ respectively denotes the left hand limit and the right hand limit of $f(x)$ at $x=0$, then $\frac{32}{\pi^2}\left(\mathrm{~L}^2+\mathrm{R}^2\right)$ is equal to ___________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP