1
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of equations

$$ \begin{aligned} & 2 x+3 y-z=5 \\\\ & x+\alpha y+3 z=-4 \\\\ & 3 x-y+\beta z=7 \end{aligned} $$

has infinitely many solutions, then $13 \alpha \beta$ is equal to :
A
1110
B
1120
C
1210
D
1220
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola

$x^2-y^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the

ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :
A
$\frac{\pi}{6}$
B
$\frac{5 \pi}{12}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{4}$
3
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation

$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x(x+y)^3-x(x+y)-1, y(0)=1$.

Then, $\left(\frac{1}{\sqrt{2}}+y\left(\frac{1}{\sqrt{2}}\right)\right)^2$ equals :
A
$\frac{4}{4+\sqrt{\mathrm{e}}}$
B
$\frac{3}{3-\sqrt{\mathrm{e}}}$
C
$\frac{2}{1+\sqrt{\mathrm{e}}}$
D
$\frac{1}{2-\sqrt{\mathrm{e}}}$
4
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as :

$$ f(x)= \begin{cases}\frac{a-b \cos 2 x}{x^2} ; & x<0 \\\\ x^2+c x+2 ; & 0 \leq x \leq 1 \\\\ 2 x+1 ; & x>1\end{cases} $$

If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :
A
1
B
4
C
3
D
2
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12