1
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^2-2, \forall x \neq 0$ and $y=9 x^2 f(x)$, then $y$ is strictly increasing in :
A
$\left(0, \frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
B
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
C
$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
D
$\left(-\infty, \frac{1}{\sqrt{5}}\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the shortest distance between the lines

$\frac{x-\lambda}{-2}=\frac{y-2}{1}=\frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1}=\frac{y-1}{-2}=\frac{z-2}{1}$ is 1 , then the sum of all possible values of $\lambda$ is :
A
0
B
$2 \sqrt{3}$
C
$3 \sqrt{3}$
D
$-2 \sqrt{3}$
3
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
If $x=x(t)$ is the solution of the differential equation $(t+1) \mathrm{d} x=\left(2 x+(t+1)^4\right) \mathrm{dt}, x(0)=2$, then, $x(1)$ equals _________.
Your input ____
4
JEE Main 2024 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language
The number of elements in the set $\mathrm{S}=\{(x, y, z): x, y, z \in \mathbf{Z}, x+2 y+3 z=42, x, y, z \geqslant 0\}$ equals __________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP