1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$x=2$$ be a root of the equation $$x^2+px+q=0$$ and $$f(x) = \left\{ {\matrix{ {{{1 - \cos ({x^2} - 4px + {q^2} + 8q + 16)} \over {{{(x - 2p)}^4}}},} & {x \ne 2p} \cr {0,} & {x = 2p} \cr } } \right.$$

Then $$\mathop {\lim }\limits_{x \to 2{p^ + }} [f(x)]$$, where $$\left[ . \right]$$ denotes greatest integer function, is

A
2
B
1
C
0
D
$$-1$$
2
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Let $$a_1,a_2,a_3,...$$ be a $$GP$$ of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $$a_1a_9+a_2a_4a_9+a_5+a_7$$ is equal to __________.

Your input ____
3
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Suppose $$f$$ is a function satisfying $$f(x + y) = f(x) + f(y)$$ for all $$x,y \in N$$ and $$f(1) = {1 \over 5}$$. If $$\sum\limits_{n = 1}^m {{{f(n)} \over {n(n + 1)(n + 2)}} = {1 \over {12}}} $$, then $$m$$ is equal to __________.

Your input ____
4
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Let the coefficients of three consecutive terms in the binomial expansion of $$(1+2x)^n$$ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of those three terms, is __________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12