Let $$[x]$$ denote the greatest integer $$\le x$$. Consider the function $$f(x) = \max \left\{ {{x^2},1 + [x]} \right\}$$. Then the value of the integral $$\int\limits_0^2 {f(x)dx} $$ is
Let $$A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0,2 x \leq y \leq \sqrt{4-(x-1)^{2}}\right\}$$ and
$$
B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: 0 \leq y \leq \min \left\{2 x, \sqrt{4-(x-1)^{2}}\right\}\right\} \text {. }
$$.
Then the ratio of the area of A to the area of B is
Consider the following system of equations
$$\alpha x+2y+z=1$$
$$2\alpha x+3y+z=1$$
$$3x+\alpha y+2z=\beta$$
for some $$\alpha,\beta\in \mathbb{R}$$. Then which of the following is NOT correct.
If the vectors $$\overrightarrow a = \lambda \widehat i + \mu \widehat j + 4\widehat k$$, $$\overrightarrow b = - 2\widehat i + 4\widehat j - 2\widehat k$$ and $$\overrightarrow c = 2\widehat i + 3\widehat j + \widehat k$$ are coplanar and the projection of $$\overrightarrow a $$ on the vector $$\overrightarrow b $$ is $$\sqrt {54} $$ units, then the sum of all possible values of $$\lambda + \mu $$ is equal to :