1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the tangents at the points $$A(4,-11)$$ and $$B(8,-5)$$ on the circle $$x^{2}+y^{2}-3 x+10 y-15=0$$, intersect at the point $$C$$. Then the radius of the circle, whose centre is $$C$$ and the line joining $$A$$ and $$B$$ is its tangent, is equal to :

A
$$\frac{2\sqrt{13}}{3}$$
B
$$\frac{3\sqrt{3}}{4}$$
C
$$\sqrt{13}$$
D
$$2\sqrt{13}$$
2
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which

satisfies $$f(x) = x + \int\limits_0^{\pi /2} {\sin (x + y)f(y)dy} $$. then $$(a+b)$$ is equal to

A
$$ - 2\pi (\pi + 2)$$
B
$$ - \pi (\pi - 2)$$
C
$$ - \pi (\pi + 2)$$
D
$$ - 2\pi (\pi - 2)$$
3
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then

A
$$\alpha=1$$
B
$$\alpha=4$$
C
$$\beta=8$$
D
$$\beta=-8$$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A light ray emits from the origin making an angle 30$$^\circ$$ with the positive $$x$$-axis. After getting reflected by the line $$x+y=1$$, if this ray intersects $$x$$-axis at Q, then the abscissa of Q is :

A
$${2 \over {\left( {\sqrt 3 - 1} \right)}}$$
B
$${2 \over {3 - \sqrt 3 }}$$
C
$${{\sqrt 3 } \over {2\left( {\sqrt 3 + 1} \right)}}$$
D
$${2 \over {3 + \sqrt 3 }}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12