Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If $$\mu$$ and $$\sigma^2$$ represent mean and variance of X, respectively, then $$10(\mu^2+\sigma^2)$$ is equal to :
Let $$f(\theta ) = 3\left( {{{\sin }^4}\left( {{{3\pi } \over 2} - \theta } \right) + {{\sin }^4}(3\pi + \theta )} \right) - 2(1 - {\sin ^2}2\theta )$$ and $$S = \left\{ {\theta \in [0,\pi ]:f'(\theta ) = - {{\sqrt 3 } \over 2}} \right\}$$. If $$4\beta = \sum\limits_{\theta \in S} \theta $$, then $$f(\beta )$$ is equal to
Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct T-shirt is :
Let the tangents at the points $$A(4,-11)$$ and $$B(8,-5)$$ on the circle $$x^{2}+y^{2}-3 x+10 y-15=0$$, intersect at the point $$C$$. Then the radius of the circle, whose centre is $$C$$ and the line joining $$A$$ and $$B$$ is its tangent, is equal to :