1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is

A
$$( - 1,\infty ) - \{ 3\} $$
B
$$\mathbb{R} - \{ - 1,3)$$
C
$$(2,\infty ) - \{ 3\} $$
D
$$\mathbb{R} - \{ 3\} $$
2
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:R \to R$$ be a function such that $$f(x) = {{{x^2} + 2x + 1} \over {{x^2} + 1}}$$. Then

A
$$f(x)$$ is many-one in $$( - \infty , - 1)$$
B
$$f(x)$$ is one-one in $$( - \infty ,\infty )$$
C
$$f(x)$$ is one-one in $$[1,\infty )$$ but not in $$( - \infty ,\infty )$$
D
$$f(x)$$ is many-one in $$(1,\infty )$$
3
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$[x]$$ denote the greatest integer $$\le x$$. Consider the function $$f(x) = \max \left\{ {{x^2},1 + [x]} \right\}$$. Then the value of the integral $$\int\limits_0^2 {f(x)dx} $$ is

A
$${{5 + 4\sqrt 2 } \over 3}$$
B
$${{4 + 5\sqrt 2 } \over 3}$$
C
$${{8 + 4\sqrt 2 } \over 3}$$
D
$${{1 + 5\sqrt 2 } \over 3}$$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0,2 x \leq y \leq \sqrt{4-(x-1)^{2}}\right\}$$ and

$$ B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: 0 \leq y \leq \min \left\{2 x, \sqrt{4-(x-1)^{2}}\right\}\right\} \text {. } $$.

Then the ratio of the area of A to the area of B is

A
$$\frac{\pi}{\pi+1}$$
B
$$\frac{\pi-1}{\pi+1}$$
C
$$\frac{\pi}{\pi-1}$$
D
$$\frac{\pi+1}{\pi-1}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12