For two non-zero complex numbers $$z_{1}$$ and $$z_{2}$$, if $$\operatorname{Re}\left(z_{1} z_{2}\right)=0$$ and $$\operatorname{Re}\left(z_{1}+z_{2}\right)=0$$, then which of the following are possible?
A. $$\operatorname{Im}\left(z_{1}\right)>0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
B. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
C. $$\operatorname{Im}\left(z_{1}\right) > 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
D. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
Choose the correct answer from the options given below :
Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to
Let $$\Delta$$ be the area of the region $$\left\{ {(x,y) \in {R^2}:{x^2} + {y^2} \le 21,{y^2} \le 4x,x \ge 1} \right\}$$. Then $${1 \over 2}\left( {\Delta - 21{{\sin }^{ - 1}}{2 \over {\sqrt 7 }}} \right)$$ is equal to
The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is