1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For two non-zero complex numbers $$z_{1}$$ and $$z_{2}$$, if $$\operatorname{Re}\left(z_{1} z_{2}\right)=0$$ and $$\operatorname{Re}\left(z_{1}+z_{2}\right)=0$$, then which of the following are possible?

A. $$\operatorname{Im}\left(z_{1}\right)>0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$

B. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$

C. $$\operatorname{Im}\left(z_{1}\right) > 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$

D. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$

Choose the correct answer from the options given below :

A
A and C
B
A and B
C
B and D
D
B and C
2
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to

A
$${e^2}$$
B
0
C
$${1 \over {{e^2}}}$$
D
$${1 \over e}$$
3
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\Delta$$ be the area of the region $$\left\{ {(x,y) \in {R^2}:{x^2} + {y^2} \le 21,{y^2} \le 4x,x \ge 1} \right\}$$. Then $${1 \over 2}\left( {\Delta - 21{{\sin }^{ - 1}}{2 \over {\sqrt 7 }}} \right)$$ is equal to

A
$$2\sqrt 3 - {1 \over 3}$$
B
$$2\sqrt 3 - {2 \over 3}$$
C
$$\sqrt 3 - {4 \over 3}$$
D
$$\sqrt 3 - {2 \over 3}$$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is

A
$$( - 1,\infty ) - \{ 3\} $$
B
$$\mathbb{R} - \{ - 1,3)$$
C
$$(2,\infty ) - \{ 3\} $$
D
$$\mathbb{R} - \{ 3\} $$
JEE Main Papers
2023
2021
EXAM MAP