17 mg of a hydrocarbon (M.F. $$\mathrm{C_{10}H_{16}}$$) takes up 8.40 mL of the H$$_2$$ gas measured at 0$$^\circ$$C and 760 mm of Hg. Ozonolysis of the same hydrocarbon yields
The number of double bond/s present in the hydrocarbon is ___________.
Let $$\lambda \ne 0$$ be a real number. Let $$\alpha,\beta$$ be the roots of the equation $$14{x^2} - 31x + 3\lambda = 0$$ and $$\alpha,\gamma$$ be the roots of the equation $$35{x^2} - 53x + 4\lambda = 0$$. Then $${{3\alpha } \over \beta }$$ and $${{4\alpha } \over \gamma }$$ are the roots of the equation
Let $$B$$ and $$C$$ be the two points on the line $$y+x=0$$ such that $$B$$ and $$C$$ are symmetric with respect to the origin. Suppose $$A$$ is a point on $$y-2 x=2$$ such that $$\triangle A B C$$ is an equilateral triangle. Then, the area of the $$\triangle A B C$$ is :
Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If $$\mu$$ and $$\sigma^2$$ represent mean and variance of X, respectively, then $$10(\mu^2+\sigma^2)$$ is equal to :