1
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to

A
$${e^2}$$
B
0
C
$${1 \over {{e^2}}}$$
D
$${1 \over e}$$
2
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\Delta$$ be the area of the region $$\left\{ {(x,y) \in {R^2}:{x^2} + {y^2} \le 21,{y^2} \le 4x,x \ge 1} \right\}$$. Then $${1 \over 2}\left( {\Delta - 21{{\sin }^{ - 1}}{2 \over {\sqrt 7 }}} \right)$$ is equal to

A
$$2\sqrt 3 - {1 \over 3}$$
B
$$2\sqrt 3 - {2 \over 3}$$
C
$$\sqrt 3 - {4 \over 3}$$
D
$$\sqrt 3 - {2 \over 3}$$
3
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is

A
$$( - 1,\infty ) - \{ 3\} $$
B
$$\mathbb{R} - \{ - 1,3)$$
C
$$(2,\infty ) - \{ 3\} $$
D
$$\mathbb{R} - \{ 3\} $$
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:R \to R$$ be a function such that $$f(x) = {{{x^2} + 2x + 1} \over {{x^2} + 1}}$$. Then

A
$$f(x)$$ is many-one in $$( - \infty , - 1)$$
B
$$f(x)$$ is one-one in $$( - \infty ,\infty )$$
C
$$f(x)$$ is one-one in $$[1,\infty )$$ but not in $$( - \infty ,\infty )$$
D
$$f(x)$$ is many-one in $$(1,\infty )$$
JEE Main Papers
2023
2021
EXAM MAP