1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$a \in R$$ and the equation $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$ (where [$$x$$] denotes the greater integer $$ \le x$$) has no integral solution, then all possible values of a lie in the interval :
A
$$\left( { - 2, - 1} \right)$$
B
$$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
C
$$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$
D
$$\left( {1,2} \right)$$
2
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
If z is a complex number such that $$\,\left| z \right| \ge 2\,$$, then the minimum value of $$\,\,\left| {z + {1 \over 2}} \right|$$ :
A
is strictly greater that $${{5 \over 2}}$$
B
is strictly greater that $${{3 \over 2}}$$ but less than $${{5 \over 2}}$$
C
is equal to $${{5 \over 2}}$$
D
lie in the interval (1, 2)
3
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
Let $$f_k\left( x \right) = {1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$ where $$x \in R$$ and $$k \ge \,1.$$
Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,\,$$ equals :
A
$${1 \over 4}$$
B
$${1 \over 12}$$
C
$${1 \over 6}$$
D
$${1 \over 3}$$
4
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$ and $${l^2} = {m^2} + {n^2}$$ is :
A
$${\pi \over 6}$$
B
$${\pi \over 2}$$
C
$${\pi \over 3}$$
D
$${\pi \over 4}$$
JEE Main Papers
2023
2021
EXAM MAP