1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
Let the population of rabbits surviving at time $$t$$ be governed by the differential equation $${{dp\left( t \right)} \over {dt}} = {1 \over 2}p\left( t \right) - 200.$$ If $$p(0)=100,$$ then $$p(t)$$ equals:
A
$$600 - 500\,{e^{t/2}}$$
B
$$400 - 300\,{e^{-t/2}}$$
C
$$400 - 300\,{e^{t/2}}$$
D
$$300 - 200\,{e^{-t/2}}$$
2
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
A
$$4\sqrt 3 - 4$$
B
$$4\sqrt 3 - 4 - {\pi \over 3}$$
C
$$\pi - 4$$
D
$${{2\pi } \over 3} - 4 - 4\sqrt 3 $$
3
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The area of the region described by
$$A = \left\{ {\left( {x,y} \right):{x^2} + {y^2} \le 1} \right.$$ and $$\left. {{y^2} \le 1 - x} \right\}$$ is :
A
$${\pi \over 2} - {2 \over 3}$$
B
$${\pi \over 2} + {2 \over 3}$$
C
$${\pi \over 2} + {4 \over 3}$$
D
$${\pi \over 2} - {4 \over 3}$$
4
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int {\left( {1 + x - {1 \over x}} \right){e^{x + {1 \over x}}}dx} $$ is equal to
A
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 68 English Option 1
B
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 68 English Option 2
C
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 68 English Option 3
D
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 68 English Option 4
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12