1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int {\left( {1 + x - {1 \over x}} \right){e^{x + {1 \over x}}}dx} $$ is equal to
A
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 76 English Option 1
B
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 76 English Option 2
C
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 76 English Option 3
D
JEE Main 2014 (Offline) Mathematics - Indefinite Integrals Question 76 English Option 4
2
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$A$$ is a $$3 \times 3$$ non-singular matrix such that $$AA'=A'A$$ and
$$B = {A^{ - 1}}A',$$ then $$BB'$$ equals:
A
$${B^{ - 1}}$$
B
$$\left( {{B^{ - 1}}} \right)'$$
C
$$I+B$$
D
$$I$$
3
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$\alpha ,\beta \ne 0,$$ and $$f\left( n \right) = {\alpha ^n} + {\beta ^n}$$ and $$$\left| {\matrix{ 3 & {1 + f\left( 1 \right)} & {1 + f\left( 2 \right)} \cr {1 + f\left( 1 \right)} & {1 + f\left( 2 \right)} & {1 + f\left( 3 \right)} \cr {1 + f\left( 2 \right)} & {1 + f\left( 3 \right)} & {1 + f\left( 4 \right)} \cr } } \right|$$$
$$ = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2},$$ then $$K$$ is equal to :
A
$$1$$
B
$$-1$$
C
$$\alpha \beta $$
D
$${1 \over {\alpha \beta }}$$
4
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
If $$x=-1$$ and $$x=2$$ are extreme points of $$f\left( x \right) = \alpha \,\log \left| x \right|+\beta {x^2} + x$$ then
A
$$\alpha = 2,\beta = - {1 \over 2}$$
B
$$\alpha = 2,\beta = {1 \over 2}$$
C
$$\alpha = - 6,\beta = {1 \over 2}$$
D
$$\alpha = - 6,\beta = -{1 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP