1
JEE Main 2019 (Online) 10th April Morning Slot
+4
-1
The electric field of a plane electromagnetic wave is given by
$$\overrightarrow E = {E_0}\widehat i\cos (kz)cos(\omega t)$$
The corresponding magnetic field $$\overrightarrow B$$ is then given by
A
$$\overrightarrow B = {{{E_0}} \over C}\widehat j\sin (kz)\sin (\omega t)$$
B
$$\overrightarrow B = {{{E_0}} \over C}\widehat j\sin (kz)\cos (\omega t)$$
C
$$\overrightarrow B = {{{E_0}} \over C}\widehat j\cos (kz)\sin (\omega t)$$
D
$$\overrightarrow B = {{{E_0}} \over C}\widehat k\sin (kz)\cos (\omega t)$$
2
JEE Main 2019 (Online) 9th April Evening Slot
+4
-1
50 W/m2 energy density of sunlight is normally incident on the surface of a solar panel. Some part of incident energy (25%) is reflected from the surface and the rest is absorbed. The force exerted on 1m2 surface area will be close to (c = 3 × 108 m/s) :-
A
20 × 10–8 N
B
35 × 10–8 N
C
10 × 10–8 N
D
15 × 10–8 N
3
JEE Main 2019 (Online) 9th April Morning Slot
+4
-1
The magnetic field of a plane electromagnetic wave is given by :
$$\overline B = {B_0}\widehat i\left[ {\cos (kz - \omega t)} \right] + {B_i}\widehat j\cos (kz + \omega t)$$\$ B0 = 3 × 10–5 T and B1 = 2 × 10–6 T.
The rms value of the force experienced by a stationary charge Q = 10–4 C at z = 0 is closest to :
A
0.6 N
B
0.9 N
C
3 × 10–2 N
D
0.1 N
4
JEE Main 2019 (Online) 8th April Evening Slot
+4
-1
The magnetic field of an electromagnetic wave is given by :-

$$\mathop B\limits^ \to = 1.6 \times {10^{ - 6}}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\mathop i\limits^ \wedge + \mathop j\limits^ \wedge } \right){{Wb} \over {{m^2}}}$$

The associated electric field will be :-
A
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z - 6 \times {{10}^{15}}t} \right)\left( -2{\mathop i\limits^ \wedge + \mathop {j}\limits^ \wedge } \right){V \over m}$$
B
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z - 6 \times {{10}^{15}}t} \right)\left( 2{\mathop i\limits^ \wedge + \mathop {j}\limits^ \wedge } \right){V \over m}$$
C
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {\mathop i\limits^ \wedge - \mathop {2j}\limits^ \wedge } \right){V \over m}$$
D
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( -{\mathop i\limits^ \wedge + \mathop {2j}\limits^ \wedge } \right){V \over m}$$
EXAM MAP
Medical
NEET