1
JEE Main 2024 (Online) 9th April Morning Shift
+4
-1

A plane EM wave is propagating along $$x$$ direction. It has a wavelength of $$4 \mathrm{~mm}$$. If electric field is in $$y$$ direction with the maximum magnitude of $$60 \mathrm{~Vm}^{-1}$$, the equation for magnetic field is :

A
$$\mathrm{B}_z=2 \times 10^{-7} \sin \left[\frac{\pi}{2}\left(x-3 \times 10^8 \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$$
B
$$\mathrm{B}_z=2 \times 10^{-7} \sin \left[\frac{\pi}{2} \times 10^3\left(x-3 \times 10^8 \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$$
C
$$\mathrm{B}_z=60 \sin \left[\frac{\pi}{2}\left(x-3 \times 10^8 \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{T}$$
D
$$\mathrm{B}_x=60 \sin \left[\frac{\pi}{2}\left(x-3 \times 10^8 \mathrm{t}\right)\right] \hat{\mathrm{i}} \mathrm{T}$$
2
JEE Main 2024 (Online) 8th April Morning Shift
+4
-1

Average force exerted on a non-reflecting surface at normal incidence is $$2.4 \times 10^{-4} \mathrm{~N}$$. If $$360 \mathrm{~W} / \mathrm{cm}^2$$ is the light energy flux during span of 1 hour 30 minutes, Then the area of the surface is:

A
$$20 \mathrm{~m}^2$$
B
$$0.2 \mathrm{~m}^2$$
C
$$0.1 \mathrm{~m}^2$$
D
$$0.02 \mathrm{~m}^2$$
3
JEE Main 2024 (Online) 6th April Evening Shift
+4
-1

In the given electromagnetic wave $$\mathrm{E}_{\mathrm{y}}=600 \sin (\omega t-\mathrm{kx}) \mathrm{Vm}^{-1}$$, intensity of the associated light beam is (in $$\mathrm{W} / \mathrm{m}^2$$ : (Given $$\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$$ )

A
486
B
729
C
243
D
972
4
JEE Main 2024 (Online) 6th April Morning Shift
+4
-1

Electromagnetic waves travel in a medium with speed of $$1.5 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}$$. The relative permeability of the medium is 2.0. The relative permittivity will be:

A
4
B
1
C
2
D
5
EXAM MAP
Medical
NEET