1
JEE Main 2018 (Online) 15th April Morning Slot
+4
-1
A monochromatic beam of light has a frequency $$v = {3 \over {2\pi }} \times {10^{12}}Hz$$ and is propagating along the direction $${{\widehat i + \widehat j} \over {\sqrt 2 }}.$$
It is polarized along the $$\widehat k$$ direction. The acceptable form for the magnetic field is :
A
B
C
D
2
JEE Main 2017 (Online) 9th April Morning Slot
+4
-1
The electric field component of a monochromatic radiation is given by

$$\overrightarrow E$$ = 2 E0 $$\widehat i$$ cos kz cos $$\omega$$t

Its magnetic field $$\overrightarrow B$$ is then given by :
A
$${{2{E_0}} \over c}$$ $$\widehat j$$ sin kz cos $$\omega$$t
B
$$-$$ $${{2{E_0}} \over c}$$ $$\widehat j$$ sin kz sin $$\omega$$t
C
$${{2{E_0}} \over c}$$ $$\widehat j$$ sin kz sin $$\omega$$t
D
$${{2{E_0}} \over c}$$ $$\widehat j$$ cos kz cos $$\omega$$t
3
JEE Main 2017 (Online) 8th April Morning Slot
+4
-1
Magnetic field in a plane electromagnetic wave is given by

$$\overrightarrow B$$ = B0 sin (k x + $$\omega$$t) $$\widehat j\,T$$

Expression for corresponding electric field will be :
Where c is speed of light.
A
$$\overrightarrow E$$ = B0 c sin (k x + $$\omega$$t) $$\widehat k$$ V/m
B
$$\overrightarrow E$$ = $${{{B_0}} \over c}$$ sin (k x + $$\omega$$t) $$\widehat k$$ V/m
C
$$\overrightarrow E$$ = $$-$$ B0 c sin (kx +$$\omega$$t) $$\widehat k$$ V/m
D
$$\overrightarrow E$$ = B0 c sin (kx $$-$$$$\omega$$t) $$\widehat k$$ V/m
4
JEE Main 2016 (Online) 10th April Morning Slot
+4
-1
Consider an electromagnetic wave propagating in vacuum. Choose the correct statement :
A
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y - \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y + \hat z} \right)$$
B
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
C
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
D
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
and the magnetic field is $$\overrightarrow B = {1 \over {\sqrt 2 }}{B_{z{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
EXAM MAP
Medical
NEET