A plane electromagnetic wave of frequency 20 MHz travels in free space along the $+x$ direction. At a particular point in space and time, the electric field vector of the wave is $\mathrm{E}_y=9.3 \mathrm{Vm}^{-1}$. Then, the magnetic field vector of the wave at that point is
The electric field of an electromagnetic wave in free space is $\overrightarrow{\mathrm{E}}=57 \cos \left[7.5 \times 10^6 \mathrm{t}-5 \times 10^{-3}(3 x+4 y)\right](4 \hat{i}-3 \hat{j}) N / C$. The associated magnetic field in Tesla is
The magnetic field in a plane electromagnetic wave is $$\mathrm{B}_{\mathrm{y}}=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 x+0.5 \times 10^{11} t\right) \mathrm{T}$$. The corresponding electric field will be :
A plane EM wave is propagating along $$x$$ direction. It has a wavelength of $$4 \mathrm{~mm}$$. If electric field is in $$y$$ direction with the maximum magnitude of $$60 \mathrm{~Vm}^{-1}$$, the equation for magnetic field is :