An object is placed in a medium of refractive index 3 . An electromagnetic wave of intensity $$6 \times 10^8 \mathrm{~W} / \mathrm{m}^2$$ falls normally on the object and it is absorbed completely. The radiation pressure on the object would be (speed of light in free space $$=3 \times 10^8 \mathrm{~m} / \mathrm{s}$$ ) :
A plane electromagnetic wave propagating in $$\mathrm{x}$$-direction is described by
$$E_y=\left(200 \mathrm{Vm}^{-1}\right) \sin \left[1.5 \times 10^7 t-0.05 x\right] \text {; }$$
The intensity of the wave is :
(Use $$\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$$)
List I | List II |
---|---|
(A) Microwave | (I) $400 \mathrm{~nm}$ to $1 \mathrm{~nm}$ |
(B) Ultraviolet | (II) $1 \mathrm{~nm}$ to $10^{-3} \mathrm{~nm}$ |
(C) X-Ray | (III) $1 \mathrm{~mm}$ to $700 \mathrm{~nm}$ |
(D) Infra-red | (IV) $0.1 \mathrm{~m}$ to $1 \mathrm{~mm}$ |
Choose the correct answer from the options given below:
In an electromagnetic wave, at an instant and at particular position, the electric field is along the negative $$z$$-axis and magnetic field is along the positive $$x$$-axis. Then the direction of propagation of electromagnetic wave is: