The electric field of an electromagnetic wave in free space is $\overrightarrow{\mathrm{E}}=57 \cos \left[7.5 \times 10^6 \mathrm{t}-5 \times 10^{-3}(3 x+4 y)\right](4 \hat{i}-3 \hat{j}) N / C$. The associated magnetic field in Tesla is
The magnetic field in a plane electromagnetic wave is $$\mathrm{B}_{\mathrm{y}}=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^3 x+0.5 \times 10^{11} t\right) \mathrm{T}$$. The corresponding electric field will be :
A plane EM wave is propagating along $$x$$ direction. It has a wavelength of $$4 \mathrm{~mm}$$. If electric field is in $$y$$ direction with the maximum magnitude of $$60 \mathrm{~Vm}^{-1}$$, the equation for magnetic field is :
Average force exerted on a non-reflecting surface at normal incidence is $$2.4 \times 10^{-4} \mathrm{~N}$$. If $$360 \mathrm{~W} / \mathrm{cm}^2$$ is the light energy flux during span of 1 hour 30 minutes, Then the area of the surface is: