Given below are two statements:
Statement I: Electromagnetic waves carry energy as they travel through space and this energy is equally shared by the electric and magnetic fields.
Statement II: When electromagnetic waves strike a surface, a pressure is exerted on the surface.
In the light of the above statements, choose the most appropriate answer from the options given below:
In a plane EM wave, the electric field oscillates sinusoidally at a frequency of $$5 \times 10^{10} \mathrm{~Hz}$$ and an amplitude of $$50 \mathrm{~Vm}^{-1}$$. The total average energy density of the electromagnetic field of the wave is : [Use $$\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2$$ ]
The electric field of an electromagnetic wave in free space is represented as $$\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \cos (\omega \mathrm{t}-\mathrm{kz}) \hat{i}$$. The corresponding magnetic induction vector will be :
A plane electromagnetic wave of frequency $$35 \mathrm{~MHz}$$ travels in free space along the $$X$$-direction. At a particular point (in space and time) $$\vec{E}=9.6 \hat{j} \mathrm{~V} / \mathrm{m}$$. The value of magnetic field at this point is :