Identify the correct statements from the following descriptions of various properties of electromagnetic waves.
(A) In a plane electromagnetic wave electric field and magnetic field must be perpendicular to each other and direction of propagation of wave should be along electric field or magnetic field.
(B) The energy in electromagnetic wave is divided equally between electric and magnetic fields.
(C) Both electric field and magnetic field are parallel to each other and perpendicular to the direction of propagation of wave.
(D) The electric field, magnetic field and direction of propagation of wave must be perpendicular to each other.
(E) The ratio of amplitude of magnetic field to the amplitude of electric field is equal to speed of light.
Choose the most appropriate answer from the options given below :
A beam of light travelling along $$X$$-axis is described by the electric field $$E_{y}=900 \sin \omega(\mathrm{t}-x / c)$$. The ratio of electric force to magnetic force on a charge $$\mathrm{q}$$ moving along $$Y$$-axis with a speed of $$3 \times 10^{7} \mathrm{~ms}^{-1}$$ will be :
(Given speed of light $$=3 \times 10^{8} \mathrm{~ms}^{-1}$$)
The oscillating magnetic field in a plane electromagnetic wave is given by
$$B_{y}=5 \times 10^{-6} \sin 1000 \pi\left(5 x-4 \times 10^{8} t\right) T$$. The amplitude of electric field will be :
A velocity selector consists of electric field $$\vec{E}=E \,\hat{k}$$ and magnetic field $$\vec{B}=B \,\hat{j}$$ with $$B=12 \,m T$$. The value of $$E$$ required for an electron of energy $$728 \,\mathrm{e} V$$ moving along the positive $$x$$-axis to pass undeflected is :
(Given, mass of electron $$=9.1 \times 10^{-31} \mathrm{~kg}$$ )