Let $y^2=12 x$ be the parabola and $S$ be its focus. Let $P Q$ be a focal chord of the parabola such that $(S P)(S Q)=\frac{147}{4}$. Let $C$ be the circle described taking $P Q$ as a diameter. If the equation of a circle $C$ is $64 x^2+64 y^2-\alpha x-64 \sqrt{3} y=\beta$, then $\beta-\alpha$ is equal to $\qquad$ .
Let $$A, B$$ and $$C$$ be three points on the parabola $$y^2=6 x$$ and let the line segment $$A B$$ meet the line $$L$$ through $$C$$ parallel to the $$x$$-axis at the point $$D$$. Let $$M$$ and $$N$$ respectively be the feet of the perpendiculars from $$A$$ and $$B$$ on $$L$$. Then $$\left(\frac{A M \cdot B N}{C D}\right)^2$$ is equal to __________.
Consider the circle $$C: x^2+y^2=4$$ and the parabola $$P: y^2=8 x$$. If the set of all values of $$\alpha$$, for which three chords of the circle $$C$$ on three distinct lines passing through the point $$(\alpha, 0)$$ are bisected by the parabola $$P$$ is the interval $$(p, q)$$, then $$(2 q-p)^2$$ is equal to __________.
Let a conic $$C$$ pass through the point $$(4,-2)$$ and $$P(x, y), x \geq 3$$, be any point on $$C$$. Let the slope of the line touching the conic $$C$$ only at a single point $$P$$ be half the slope of the line joining the points $$P$$ and $$(3,-5)$$. If the focal distance of the point $$(7,1)$$ on $$C$$ is $$d$$, then $$12 d$$ equals ________.