Let the length of the focal chord PQ of the parabola $$y^2=12 x$$ be 15 units. If the distance of $$\mathrm{PQ}$$ from the origin is $$\mathrm{p}$$, then $$10 \mathrm{p}^2$$ is equal to __________.
Let $$P(\alpha, \beta)$$ be a point on the parabola $$y^2=4 x$$. If $$P$$ also lies on the chord of the parabola $$x^2=8 y$$ whose mid point is $$\left(1, \frac{5}{4}\right)$$, then $$(\alpha-28)(\beta-8)$$ is equal to _________.
Let the tangent to the parabola $$\mathrm{y}^{2}=12 \mathrm{x}$$ at the point $$(3, \alpha)$$ be perpendicular to the line $$2 x+2 y=3$$. Then the square of distance of the point $$(6,-4)$$ from the normal to the hyperbola $$\alpha^{2} x^{2}-9 y^{2}=9 \alpha^{2}$$ at its point $$(\alpha-1, \alpha+2)$$ is equal to _________.