Let $$P(\alpha, \beta)$$ be a point on the parabola $$y^2=4 x$$. If $$P$$ also lies on the chord of the parabola $$x^2=8 y$$ whose mid point is $$\left(1, \frac{5}{4}\right)$$, then $$(\alpha-28)(\beta-8)$$ is equal to _________.
Let the tangent to the parabola $$\mathrm{y}^{2}=12 \mathrm{x}$$ at the point $$(3, \alpha)$$ be perpendicular to the line $$2 x+2 y=3$$. Then the square of distance of the point $$(6,-4)$$ from the normal to the hyperbola $$\alpha^{2} x^{2}-9 y^{2}=9 \alpha^{2}$$ at its point $$(\alpha-1, \alpha+2)$$ is equal to _________.
Let a common tangent to the curves $${y^2} = 4x$$ and $${(x - 4)^2} + {y^2} = 16$$ touch the curves at the points P and Q. Then $${(PQ)^2}$$ is equal to __________.
The ordinates of the points P and $$\mathrm{Q}$$ on the parabola with focus $$(3,0)$$ and directrix $$x=-3$$ are in the ratio $$3: 1$$. If $$\mathrm{R}(\alpha, \beta)$$ is the point of intersection of the tangents to the parabola at $$\mathrm{P}$$ and $$\mathrm{Q}$$, then $$\frac{\beta^{2}}{\alpha}$$ is equal to _______________.