Let $A$ and $B$ be the two points of intersection of the line $y+5=0$ and the mirror image of the parabola $y^2=4 x$ with respect to the line $x+y+4=0$. If $d$ denotes the distance between $A$ and $B$, and a denotes the area of $\triangle S A B$, where $S$ is the focus of the parabola $y^2=4 x$, then the value of $(a+d)$ is __________.
The focus of the parabola $y^2=4 x+16$ is the centre of the circle $C$ of radius 5 . If the values of $\lambda$, for which C passes through the point of intersection of the lines $3 x-y=0$ and $x+\lambda y=4$, are $\lambda_1$ and $\lambda_2, \lambda_1<\lambda_2$, then $12 \lambda_1+29 \lambda_2$ is equal to ________ .
Let $$A, B$$ and $$C$$ be three points on the parabola $$y^2=6 x$$ and let the line segment $$A B$$ meet the line $$L$$ through $$C$$ parallel to the $$x$$-axis at the point $$D$$. Let $$M$$ and $$N$$ respectively be the feet of the perpendiculars from $$A$$ and $$B$$ on $$L$$. Then $$\left(\frac{A M \cdot B N}{C D}\right)^2$$ is equal to __________.
Consider the circle $$C: x^2+y^2=4$$ and the parabola $$P: y^2=8 x$$. If the set of all values of $$\alpha$$, for which three chords of the circle $$C$$ on three distinct lines passing through the point $$(\alpha, 0)$$ are bisected by the parabola $$P$$ is the interval $$(p, q)$$, then $$(2 q-p)^2$$ is equal to __________.