1
JEE Main 2023 (Online) 30th January Morning Shift
Numerical
+4
-1

Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.

2
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1

Suppose $$f$$ is a function satisfying $$f(x + y) = f(x) + f(y)$$ for all $$x,y \in N$$ and $$f(1) = {1 \over 5}$$. If $$\sum\limits_{n = 1}^m {{{f(n)} \over {n(n + 1)(n + 2)}} = {1 \over {12}}}$$, then $$m$$ is equal to __________.

3
JEE Main 2023 (Online) 25th January Morning Shift
Numerical
+4
-1

For some a, b, c $$\in\mathbb{N}$$, let $$f(x) = ax - 3$$ and $$\mathrm{g(x)=x^b+c,x\in\mathbb{R}}$$. If $${(fog)^{ - 1}}(x) = {\left( {{{x - 7} \over 2}} \right)^{1/3}}$$, then $$(fog)(ac) + (gof)(b)$$ is equal to ____________.

4
JEE Main 2022 (Online) 28th July Morning Shift
Numerical
+4
-1

For $$\mathrm{p}, \mathrm{q} \in \mathbf{R}$$, consider the real valued function $$f(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R}$$ and $$\mathrm{q}>0$$. Let $$\mathrm{a}_{1}$$, $$\mathrm{a}_{2^{\prime}}$$ $$\mathrm{a}_{3}$$ and $$\mathrm{a}_{4}$$ be in an arithmetic progression with mean $$\mathrm{p}$$ and positive common difference. If $$\left|f\left(\mathrm{a}_{i}\right)\right|=500$$ for all $$i=1,2,3,4$$, then the absolute difference between the roots of $$f(x)=0$$ is ___________.