Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f : S $$\to$$ S as
$$f(n) = \left\{ {\matrix{ {2n} & , & {if\,n = 1,2,3,4,5} \cr {2n - 11} & , & {if\,n = 6,7,8,9,10} \cr } } \right.$$.
Let g : S $$\to$$ S be a function such that $$fog(n) = \left\{ {\matrix{ {n + 1} & , & {if\,n\,\,is\,odd} \cr {n - 1} & , & {if\,n\,\,is\,even} \cr } } \right.$$.
Then $$g(10)g(1) + g(2) + g(3) + g(4) + g(5))$$ is equal to _____________.
Let f : R $$\to$$ R be a function defined by $$f(x) = {{2{e^{2x}}} \over {{e^{2x}} + e}}$$. Then $$f\left( {{1 \over {100}}} \right) + f\left( {{2 \over {100}}} \right) + f\left( {{3 \over {100}}} \right) + \,\,\,.....\,\,\, + \,\,\,f\left( {{{99} \over {100}}} \right)$$ is equal to ______________.
Let $$f:R \to R$$ be a function defined by
$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.
The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such
that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.