1
JEE Main 2023 (Online) 25th January Morning Shift
Numerical
+4
-1
Change Language

For some a, b, c $$\in\mathbb{N}$$, let $$f(x) = ax - 3$$ and $$\mathrm{g(x)=x^b+c,x\in\mathbb{R}}$$. If $${(fog)^{ - 1}}(x) = {\left( {{{x - 7} \over 2}} \right)^{1/3}}$$, then $$(fog)(ac) + (gof)(b)$$ is equal to ____________.

Your input ____
2
JEE Main 2022 (Online) 28th July Morning Shift
Numerical
+4
-1
Change Language

For $$\mathrm{p}, \mathrm{q} \in \mathbf{R}$$, consider the real valued function $$f(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R}$$ and $$\mathrm{q}>0$$. Let $$\mathrm{a}_{1}$$, $$\mathrm{a}_{2^{\prime}}$$ $$\mathrm{a}_{3}$$ and $$\mathrm{a}_{4}$$ be in an arithmetic progression with mean $$\mathrm{p}$$ and positive common difference. If $$\left|f\left(\mathrm{a}_{i}\right)\right|=500$$ for all $$i=1,2,3,4$$, then the absolute difference between the roots of $$f(x)=0$$ is ___________.

Your input ____
3
JEE Main 2022 (Online) 27th July Evening Shift
Numerical
+4
-1
Change Language

The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.

Your input ____
4
JEE Main 2022 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language

Let $$f(x)=2 x^{2}-x-1$$ and $$\mathrm{S}=\{n \in \mathbb{Z}:|f(n)| \leq 800\}$$. Then, the value of $$\sum\limits_{n \in S} f(n)$$ is equal to ___________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12