Let $$\mathrm{A}=\{1,2,3, \ldots, 7\}$$ and let $$\mathrm{P}(\mathrm{A})$$ denote the power set of $$\mathrm{A}$$. If the number of functions $$f: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$$ such that $$\mathrm{a} \in f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A}$$ is $$\mathrm{m}^{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n} \in \mathrm{N}$$ and $$\mathrm{m}$$ is least, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.
Let $$\mathrm{A}=\{1,2,3,4,5\}$$ and $$\mathrm{B}=\{1,2,3,4,5,6\}$$. Then the number of functions $$f: \mathrm{A} \rightarrow \mathrm{B}$$ satisfying $$f(1)+f(2)=f(4)-1$$ is equal to __________.
Let $$\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$$ and $$\mathrm{S}=\{1,2,3,4\}$$. Total number of onto functions $$f: \mathrm{R} \rightarrow \mathrm{S}$$ such that $$f(\mathrm{a}) \neq 1$$, is equal to ______________.
If domain of the function $$\log _{e}\left(\frac{6 x^{2}+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^{2}-3 x+4}{3 x-5}\right)$$ is $$(\alpha, \beta) \cup(\gamma, \delta]$$, then $$18\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)$$ is equal to ______________.