The equilibrium constant for decomposition of $\text{H}_2\text{O(g)}$
$ \text{H}_2\text{O(g)} \rightleftharpoons \text{H}_2\text{(g)} + \frac{1}{2}\text{O}_2\text{(g)} \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $
is $8.0 \times 10^{-3}$ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($\alpha$) of water is _________ $\times 10^{-2}$ (nearest integer value).
[Assume $\alpha$ is negligible with respect to 1]
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _______ M. (Nearest Integer value)
(Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol-1)
Resonance in $\mathrm{X}_2 \mathrm{Y}$ can be represented as
The enthalpy of formation of $X_2Y$ $ \left(X = X(g) + \frac{1}{2} Y = Y(g) \rightarrow X_2Y(g) \right) $ is 80 kJ mol$^{-1}$. The magnitude of resonance energy of $X_2Y$ is __ kJ mol$^{-1}$ (nearest integer value).
Given: Bond energies of $X \equiv X$, $X = X$, $Y = Y$ and $X = Y$ are 940, 410, 500, and 602 kJ mol$^{-1}$ respectively.
valence $X$: 3, $Y$: 2
Let the values of $\lambda$ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be $\lambda_1$ and $\lambda_2$. Then the radius of the circle passing through the
points $(0, 0), (\lambda_1, \lambda_2)$ and $(\lambda_2, \lambda_1)$ is