1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the values of $\lambda$ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be $\lambda_1$ and $\lambda_2$. Then the radius of the circle passing through the
points $(0, 0), (\lambda_1, \lambda_2)$ and $(\lambda_2, \lambda_1)$ is

A

$3$

B

$\frac{5\sqrt{2}}{3}$

C

$\frac{\sqrt{2}}{3}$

D

$4$

2
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $f(x) = x - 1$ and $g(x) = e^x$ for $x \in \mathbb{R}$. If $\frac{dy}{dx} = \left( e^{-2\sqrt{x}} g\left(f(f(x))\right) - \frac{y}{\sqrt{x}} \right)$, $y(0) = 0$, then $y(1)$ is

A

$\frac{1 - e^3}{e^4}$

B

$\frac{e-1}{e^4}$

C

$\frac{1 - e^2}{e^4}$

D

$\frac{2e - 1}{e^3}$

3
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots \infty= \frac{\pi^4}{90} $,

$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots \infty= \alpha $,

$ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \ldots \infty= \beta $,

then $ \frac{\alpha}{\beta} $ is equal to :

A

23

B

14

C

18

D

15

4
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let a be the length of a side of a square OABC with O being the origin. Its side OA makes an acute angle $$\alpha $$ with the positive x-axis and the equations of its diagonals are $(\sqrt{3}+1)x+(\sqrt{3}-1)y=0$ and $(\sqrt{3}-1)x-(\sqrt{3}+1)y+8\sqrt{3}=0$. Then $a$2 is equal to :

A

48

B

16

C

24

D

32

JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12