1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $ and $ \vec{b} = 2\hat{i} + \hat{j} - \hat{k} $. Let $ \hat{c} $ be a unit vector in the plane of the vectors $ \vec{a} $ and $ \vec{b} $ and be perpendicular to $ \vec{a} $. Then such a vector $ \hat{c} $ is:

A

$ \frac{1}{\sqrt{2}}(-\hat{i} + \hat{k}) $

B

$ \frac{1}{\sqrt{5}}(\hat{j} - 2\hat{k}) $

C

$ \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) $

D

$ \frac{1}{\sqrt{3}}(-\hat{i} + \hat{j} - \hat{k}) $

2
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to

A

48

B

40

C

36

D

28

3
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of integral terms in the expansion of $ \left( {5^\frac{1}{2}} + 7^\frac{1}{8} \right)^{1016} $ is:

A

127

B

128

C

130

D

129

4
JEE Main 2025 (Online) 8th April Evening Shift
Numerical
+4
-1
Change Language
The product of the last two digits of $(1919)^{1919}$ is
Your input ____
JEE Main Papers
2023
2021
EXAM MAP