1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $ and $ \vec{b} = 2\hat{i} + \hat{j} - \hat{k} $. Let $ \hat{c} $ be a unit vector in the plane of the vectors $ \vec{a} $ and $ \vec{b} $ and be perpendicular to $ \vec{a} $. Then such a vector $ \hat{c} $ is:

A

$ \frac{1}{\sqrt{2}}(-\hat{i} + \hat{k}) $

B

$ \frac{1}{\sqrt{5}}(\hat{j} - 2\hat{k}) $

C

$ \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) $

D

$ \frac{1}{\sqrt{3}}(-\hat{i} + \hat{j} - \hat{k}) $

2
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to

A

48

B

40

C

36

D

28

3
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The number of integral terms in the expansion of $ \left( {5^\frac{1}{2}} + 7^\frac{1}{8} \right)^{1016} $ is:

A

127

B

128

C

130

D

129

4
JEE Main 2025 (Online) 8th April Evening Shift
Numerical
+4
-1
The product of the last two digits of $(1919)^{1919}$ is
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12