The sum of the squares of the roots of $ |x-2|^2 + |x-2| - 2 = 0 $ and the squares of the roots of $ x^2 - 2|x-3| - 5 = 0 $, is
The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to
Let $ A = \left\{ \theta \in [0, 2\pi] : 1 + 10\operatorname{Re}\left( \frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta} \right) = 0 \right\} $. Then $ \sum\limits_{\theta \in A} \theta^2 $ is equal to
Given below are two statements:
Statement I: $ \lim\limits_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5} $
Statement II: $ \lim\limits_{x \to 1} \left( x^{\frac{2}{1-x}} \right) = \frac{1}{e^2} $
In the light of the above statements, choose the correct answer from the options given below: