1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The sum of the squares of the roots of $ |x-2|^2 + |x-2| - 2 = 0 $ and the squares of the roots of $ x^2 - 2|x-3| - 5 = 0 $, is

A

24

B

26

C

36

D

30

2
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to

A

$ \pi - \frac{3}{2} $

B

$ \pi + \frac{5}{2} $

C

$ \pi - \frac{5}{4} $

D

$ \pi + \frac{3}{2} $

3
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $ A = \left\{ \theta \in [0, 2\pi] : 1 + 10\operatorname{Re}\left( \frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta} \right) = 0 \right\} $. Then $ \sum\limits_{\theta \in A} \theta^2 $ is equal to

A

$ \frac{21}{4} \pi^2 $

B

$ 6\pi^2 $

C

$ \frac{27}{4} \pi^2 $

D

$ 8\pi^2 $

4
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Given below are two statements:

Statement I: $ \lim\limits_{x \to 0} \left( \frac{\tan^{-1} x + \log_e \sqrt{\frac{1+x}{1-x}} - 2x}{x^5} \right) = \frac{2}{5} $

Statement II: $ \lim\limits_{x \to 1} \left( x^{\frac{2}{1-x}} \right) = \frac{1}{e^2} $

In the light of the above statements, choose the correct answer from the options given below:

A

Statement I is false but Statement II is true

B

Both Statement I and Statement II are false

C

Both Statement I and Statement II are true

D

Statement I is true but Statement II is false

JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12