Let $f(x) = x - 1$ and $g(x) = e^x$ for $x \in \mathbb{R}$. If $\frac{dy}{dx} = \left( e^{-2\sqrt{x}} g\left(f(f(x))\right) - \frac{y}{\sqrt{x}} \right)$, $y(0) = 0$, then $y(1)$ is
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots \infty= \frac{\pi^4}{90} $,
$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots \infty= \alpha $,
$ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \ldots \infty= \beta $,
then $ \frac{\alpha}{\beta} $ is equal to :
Let a be the length of a side of a square OABC with O being the origin. Its side OA makes an acute angle $$\alpha $$ with the positive x-axis and the equations of its diagonals are $(\sqrt{3}+1)x+(\sqrt{3}-1)y=0$ and $(\sqrt{3}-1)x-(\sqrt{3}+1)y+8\sqrt{3}=0$. Then $a$2 is equal to :
A line passing through the point P($a$, 0) makes an acute angle $$\alpha $$ with the positive x-axis. Let this line be rotated about the point P through an angle $\frac{\alpha}{2}$ in the clockwise direction. If in the new position, the slope of the line is $2 - \sqrt{3}$ and its distance from the origin is $\frac{1}{\sqrt{2}}$, then the value of $3a^2 \tan^2 \alpha - 2\sqrt{3}$ is :