If $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, then the value of $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ equals :
Let $f(x)=\int_0^{x^2} \frac{\mathrm{t}^2-8 \mathrm{t}+15}{\mathrm{e}^{\mathrm{t}}} \mathrm{dt}, x \in \mathbf{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are :
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,9,16\}$. Then the number of many-one functions $f: \mathrm{A} \rightarrow \mathrm{B}$ such that $1 \in f(\mathrm{~A})$ is equal to :
Let the curve $z(1+i)+\bar{z}(1-i)=4, z \in C$, divide the region $|z-3| \leq 1$ into two parts of areas $\alpha$ and $\beta$. Then $|\alpha-\beta|$ equals :