Let $\mathrm{A}(6,8), \mathrm{B}(10 \cos \alpha,-10 \sin \alpha)$ and $\mathrm{C}(-10 \sin \alpha, 10 \cos \alpha)$, be the vertices of a triangle. If $L(a, 9)$ and $G(h, k)$ be its orthocenter and centroid respectively, then $(5 a-3 h+6 k+100 \sin 2 \alpha)$ is equal to ___________.
Let $y=f(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x y}{x^2-1}=\frac{x^6+4 x}{\sqrt{1-x^2}},-1< x<1$ such that $f(0)=0$. If $6 \int_{-1 / 2}^{1 / 2} f(x) \mathrm{d} x=2 \pi-\alpha$ then $\alpha^2$ is equal to _________ .
If $\sum_\limits{r=1}^{30} \frac{r^2\left({ }^{30} C_r\right)^2}{{ }^{30} C_{r-1}}=\alpha \times 2^{29}$, then $\alpha$ is equal to _________.
Let the distance between two parallel lines be 5 units and a point $P$ lie between the lines at a unit distance from one of them. An equilateral triangle $P Q R$ is formed such that $Q$ lies on one of the parallel lines, while R lies on the other. Then $(Q R)^2$ is equal to _________.