1
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is

A
$\pi$
B
$\frac{5 \pi}{6}$
C
$\frac{\pi}{2}$
D
$4 \pi$
2
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of

$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\ & \alpha u+\beta v=18, \\\\ & \gamma u+\delta v=20, \end{aligned}$$

then $\mathrm{u+v}$ equals :

A
4
B
3
C
5
D
8
3
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :

A
$6$
B
$4 \sqrt{3}$
C
$3 \sqrt{5}$
D
$5 \sqrt{2}$
4
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :

A
$\mathrm{e}^{\pi / 4}$
B
$e^{\pi / 12}$
C
$\mathrm{e}^{\pi / 6}$
D
$e^{\pi / 3}$
JEE Main Papers
2023
2021
EXAM MAP