1
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1

If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :

A
$\mathrm{e}^{\pi / 4}$
B
$e^{\pi / 12}$
C
$\mathrm{e}^{\pi / 6}$
D
$e^{\pi / 3}$
2
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1

If $A$ and $B$ are two events such that $P(A \cap B)=0.1$, and $P(A \mid B)$ and $P(B \mid A)$ are the roots of the equation $12 x^2-7 x+1=0$, then the value of $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is :

A
$\frac{4}{3}$
B
$\frac{7}{4}$
C
$\frac{9}{4}$
D
$\frac{5}{3}$
3
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1

For a $3 \times 3$ matrix $M$, let trace $(M)$ denote the sum of all the diagonal elements of $M$. Let $A$ be a $3 \times 3$ matrix such that $|A|=\frac{1}{2}$ and trace $(A)=3$. If $B=\operatorname{adj}(\operatorname{adj}(2 A))$, then the value of $|B|+$ trace $(B)$ equals :

A
56
B
132
C
174
D
280
4
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1

If $\int \mathrm{e}^x\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^2}}+\frac{\sin ^{-1} x}{\left(1-x^2\right)^{3 / 2}}+\frac{x}{1-x^2}\right) \mathrm{d} x=\mathrm{g}(x)+\mathrm{C}$, where C is the constant of integration, then $g\left(\frac{1}{2}\right)$ equals :

A
$\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}$
B
$\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{2}}$
C
$\frac{\pi}{4} \sqrt{\frac{\mathrm{e}}{3}}$
D
$\frac{\pi}{4} \sqrt{\frac{\mathrm{e}}{2}}$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12