The area of the region enclosed by the curves $y=x^2-4 x+4$ and $y^2=16-8 x$ is :
In a group of 3 girls and 4 boys, there are two boys $B_1$ and $B_2$. The number of ways, in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but $B_1$ and $B_2$ are not adjacent to each other, is :
If $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, then the value of $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ equals :
Let $f(x)=\int_0^{x^2} \frac{\mathrm{t}^2-8 \mathrm{t}+15}{\mathrm{e}^{\mathrm{t}}} \mathrm{dt}, x \in \mathbf{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are :