Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of
$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\ & \alpha u+\beta v=18, \\ & \gamma u+\delta v=20, \end{aligned}$$ then $\mathrm{u+v}$ equals :
The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :
If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :
If $A$ and $B$ are two events such that $P(A \cap B)=0.1$, and $P(A \mid B)$ and $P(B \mid A)$ are the roots of the equation $12 x^2-7 x+1=0$, then the value of $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is :